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Abstract—In response to the MagNet Challenge 2023, this 

paper describes the model submitted to the competition by the 

University of Bristol team, which was awarded the 3rd Place 

Outstanding Performance among 24 competing teams worldwide. 

The core loss of magnetic components has been a challenge for the 

engineers to model due to lack of full physical models. Classic 

Steinmentz-Equation-based approaches show significant 

limitations under power electronics excitations. Data-driven 

approaches have emerged in the past years as a new solution to 

this problem, while the optimal method is still under exploration. 

Based on the datasets supplied by Princeton University, this work 

employs a machine learning framework to predict the core loss of 

magnetic components from a range of flux density waveforms, e.g. 

sinusoidal, rectangular, trapozoidal, as the input. The proposed 

approach builds on an LSTM network to extract features from the 

input waveforms and predict the power loss value. To cope with 

the small and imbalanced datasets supplied in the competition, 

special techniques are proposed in this work featuring transfer 

learning and few-shot training, which are realized through data 

augmentation and alignment. To decouple the output from the 

phase shift of the input waveform, a random shift/flip algorithm is 

applied in both pre- and post-processing blocks. The performance 

of the proposed approach is validated and evaluated through the 

experimentally measured testing sets in the competition, which 

demonstrates a very high accuracy.  

Keywords—MagNet Challenge, machine learning, neural 

networks, magnetic core loss, power electronics 

I. INTRODUCTION  

   Nowadays, magnetic components are involved in most power 

electronic converters for functionality and filtering purposes. 

They are typically known to be the least efficient component 

that have a significant impact on system performance and 

efficiency in the size, weight and power loss factor [1][2]. 

However, an accurate core loss model for magnetic components 

that is based on the first principle remains elusive due to the 

non-linear feature of the magnetic material and other 

intercoupled factors such as dc-bias condition. Numerous 

research studies have been carried out to factor in the external 

parameters contributing to magnetic loss under nonsinusoidal 

excitations. The Steinmetz equation (SE), shown in (1), is 

widely accepted as an empirical model to calculate core loss 

under sinusoidal excitation. The k, α and β are the SE 

parameters which can be calculated by substituting the 

measured core loss value with the corresponding frequency and 

peak flux density values. This results in diminished precision of 

the equation due to the SE parameters demonstrating 

inconsistent performance across different frequency ranges. 

𝑃𝑙𝑜𝑠𝑠 = k𝑓𝛼𝐵𝛽 (1) 

   To enhance the versatility and accuracy of the SE, the 

improved generalised Steinmetz equation (iGSE), as a modified 

solution, has been proposed based on SE for calculating core 

loss for arbitrary flux waveform under zero DC-biased 

condition [3]. The core concept of iGSE is to divide the 

complex waveform into individual B-H loops and calculate the 

loss respectively. However, these models generally face 

limitations in accuracy, particularly with certain waveform 

types, and tend to overlook the effects of temperature. Another 

approach called ‘Loss map’ is proposed in [4][5] for 

incorporating the pre-magnetization effects. To begin with, the 

operating state of one magnetic component can be described by 

three variables, the pre-magnetization state, the magnetic flux 

density swing and the flux density change rate. By measuring 

the B-H loop at various preset operating points, a core loss 

profile can be produced to cover all the operating conditions 

and used directly as a look-up table. 

   In recent years, methods using neural networks and other 

machine learning techniques have demonstrated excellent 

results in addressing nonlinear regression problems and 

forecasting time series data (e.g. image recognition) [6]. This 

technique could also be applied in core loss predicting and has 

proven to be more precise than the classic modelling based on 

the Steinmetz equation [7][8].  

   Three neural network models have been proposed and 

discussed in [7]. There is the ‘scalar-to-scalar’ model such as 

FNN which acts similarly to the Steinmetz equation that uses 

parameters such as flux density and frequency to directly 

predict the power loss. Overcoming the limitations of SE, the 

FNN-based model is proven to have a higher accuracy rate 

across the frequency range while covering external influencing 

factors such as temperature. One drawback of this model is that 

different models have to be trained according to the excitation 

waveform type which a set of scalar parameters could not fully 

represent. On the other hand, the ‘sequence-to-sequence’ model 

such as the transformer model [9] introduces the complete 

excitation waveform to the training process and predicts the 

magnetic response. While solving the issue of producing 
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corresponding models to waveform types, the ‘sequence-to-

sequence’ model normally introduces an enormous amount of 

parameters in both the input and output sides of the model 

which would lead to a longer training process and higher 

requirement for the training platform. To fit the sequence-to-

scalars problem presented in the MagNet Challenge, the Long 

Short-Term Memory (LSTM) network shows strong potential. 

The LSTM network excels in processing regression problems 

with sequential input due to its key feature of capturing long-

term dependencies in data and overcoming the short-memory 

issue prevalent in standard RNN models [10]. These 

characteristics are suitable for fulfilling the requirements for 

processing and analysing the time-series data B(t) and 

subsequently predicting the single-value output, the core loss 

density. 

      In response to the MagNet Challenge 2023, the contribution 

of this work is a novel machine learning framework based on 

LSTM network and transfer learning, which is easy to 

implement and outperforms almost all the competing models 

especially under the few-shot learning senario.  

II. THE MAGNET CHALLENGE 

The aim of the challenge is to yield a “prediction model” for 
one magnetic core material, which takes in three inputs, B, f and 
T and outputs one volumetric loss density value. To achieve this 
aim, a machine learning process is expected to learn from the 
large database provided, which is experimentally measured loss 
and waveforms. This database is treated as the “ground truth” in 
this work. Hence the top-level idea of this work is illustrated in 
Fig. 1. 

 
Fig. 1. The goal  

The given datasets in the competition is designed to reflec 
real-life use senarios. There is a large-scale database of ten 
magnetic materials provided as the solid ground and starting 
point of this work. The number of samples given for the ten base 
materials are given in the table below. 

Table I Number of samples given for 10 known materials 

Material 3C90 3C94 3E6 3F4 77 

Samples 40713 40068 6996 6564 11444 

Material 78 N27 N30 N49 N87 

Samples 11380 11396 8978 8602 40616 

 

This large-scale database can serve as the foundation for the 
pre-training in a transfer learning process. Reflecting the real-
world senario to adapt a trained base model to a new material, 
the data available for five unknown materials are given with a 
small and unbalanced/skewed training sets as illustrated in Fig. 
2. The final testing data is given with only time-series inputs (B) 
to test out the model predictions.  

 
Fig. 2. The challenges in the given datasets 

III. MACHINE LEARNING FRAMEWORK 

A. Overall structure/pipeline with Transfer Learning 

The MagNet Challenge emulates practical use case by 
supplying rich datasets for the ten known materials and very 
limited and imbalanced datasets for the five unknown materials. 
To address this use case, this work adopts a transfer learning 
pipeline, which contains a pre-training stage and a fine-tuning 
stage. This pipeline is illustrated in Fig. 3. Starting from zero in 
the pre-training stage, the machine learning model is trained by 
a large dataset of one particular material. during the pre-training 
phase, all materials are first divided into training, validation, and 
test sets in a ratio of 8:2:1. During training, the model that 
performs best on the validation set is retained based on its 
results, not the training set results. This approach helps the 
model to avoid overfitting to the training set, which could result 
in significant errors. 

As the most commonly-used and perhaps the most 
representative material in engineering, the training data of 
material 3C90 is used to generate a “fundamental model” as a 
generalised model to extract the key physical patterns for the 
general task of predicting the core loss value given the input 
data. The fundamental model is then tuned in the second-stage 
of pre-training against the ten materials’ training set, which 
yields 10 “base models” {Mi, i = 1…10}. A relatively high 
learning rate (1e-3) and an adaptive learning algorithm (Adam) 
is employed in the training process. 

In the fine-tuning stage, one of the base model is selected 
and tuned specifically for one particular unknown material (e.g. 
Material A) in the final test data. This stage starts with a 
selection logic to pick out the best tuned base models based on 
the minimal average error that one base model yields on the 
testing data, which can be considered as identifying one material 
out of the original ten materials that is most similar to Material 
A. At the end, a fine-tuned model for Material A is generated for 
deployment. 

This pipeline is designed to make the most out of the rich 
training set of the original ten materials and transfer the learned 
knowledge into the fine-tuning step, which is a solution to the 
limited dataset for the testing data/materials. This idea is 
inspired from a machine learning concept called “meta 
learning”. The "meta" parameters of a neural network are 
pretrained using a similar material (3C90) and adapted to the 
target materials with further finetuning.  
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For the training process, the data are split into training set, 
validation set and a test set on a 70-20-10 basis. The split is 
performed randomly to minimize bias. 

B. Long Short-Term Memory (LSTM) network 

As the fundamental machine learning approach, a Long 
Short-Term Memory (LSTM) network is applied in this work, 
employing a 3-layer LSTM architecture with 90,653 parameters. 
This network is capable of processing the input time-series B 
waveform data to extract waveform features. As shown in Fig. 
4, the LSTM network is dedicated to processing time-series 
waveform data, aiding in the preservation of waveform feature 
extractor parameters during transfer learning training, which 
enhances the efficiency of transfer learning. Subsequently, 
temperature and frequency data are inputted alongside 
waveform features into a Feedforward Neural Network (FNN).  
The neural network generates one scalar, the volumetric 
magnetic loss, as the output – the whole process is a sequence-
to-scalar model. 

 
Fig. 4. Example of LSTM neural network structure 

The data undergo normalization after FNN processing to 
compute the per-unit loss of magnetic materials. The FNN 
incorporates fully connected layers and employs the Exponential 
Linear Unit (ELU) as its activation function. The ELU function 
is continuous, aiding in maintaining output continuity and 
exhibits faster convergence during model training while 
avoiding saturation issues, unlike functions such as tanh. 

C. Loss function 

Ensuring effective training of the neural network and clearly 
defining its performance metrics are critical. Establishing a 
suitable performance evaluation standard is essential for 
accurately assessing the neural network model's capability in 
predicting magnetic material losses. Typically, the model's 
performance is evaluated by the low degree of its prediction 
error: the lower the percentage error of the model, the higher its 
performance is considered. The performance of the magnetic 
core loss model can be quantified by the 95th percentil error 
where the error is defined as 

𝑒𝑟𝑟𝑜𝑟 = |
𝑝𝑟𝑒𝑑 − 𝑟𝑒𝑎𝑙

𝑟𝑒𝑎𝑙
| (1) 

In this context, determining the appropriate loss function for 
neural network training becomes crucial. A squared relative 
error loss function is selected in this work as 

𝐿𝑜𝑠𝑠 = (
𝑝𝑟𝑒𝑑 − 𝑟𝑒𝑎𝑙

𝑟𝑒𝑎𝑙
)
2

 (1) 

In this loss function, the square term is primarily used to 
avoid negative error values and to maintain the smoothness of 
the loss data. Additionally, by squaring the errors, the network 
is encouraged to minimize extreme values, which helps reduce 
the model's 95% confidence interval and the maximum error, 
thereby enhancing the reliability of the model's predictions. This 
approach not only aids in improving the overall performance of 
the model but also ensures the stability and credibility of the 
model's outputs. 

IV. DATA PRE-PROCESSING 

As marked in blue texts in Fig. 3, the training data has gone 
through a data pre-processing process before each training task 
takes place. To adapt input data for the neural network's 
requirements and ensure the data processing workflow promotes 
model training stability and efficiency, normalizing the input 
data is a critical step. It helps to avoid issues like gradient 
vanishing or explosion. 

A. Waveform down-sampling 

Initially, waveform data is processed through down 
sampling, for instance, reducing from 1024 data points to 128 
using linear interpolation. This reduction lowers the model's 
computational load while it still maintains a level of accuracy 
without missing key patterns/details. This operation may also 
reduce the overfitting on irrelevant/insignificant details 
contained in the waveforms. 

B. Data standardization (linear scaling) 

The input variables temperature and frequency are linearly 
rescaled through y=kx + b into values in the range of [0, 1]. The 
B waveform and the loss density are standardized to values are 
in the range of [-1, 1] while maintaining their linear relationship 
by setting b to zero. This procedure retains the polarity 
information and the linear correlation between the primary input 

 
Fig. 3. Overall pipeline with transfer learning (example with 3C90 as the 

fundamental base and Material C as the target)  
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(B waveform) and the single model output (loss density) for 
better LSTM waveform feature extraction.  

This data standardization process is observed to enhance the 
model performance, avoids numerical instabilities and improves 
model performance. For the LSTM, data standardization can 
improve the convergence in the gradient descent optimization 
process. In the case of standardising the B waveform, it can be 
considered as extracting the shape of the waveform and 
minimize the numerical impacts of the magnitude of data. The 
standardization process is illustrated in Fig. 5, where the raw 
data is processed into standardized data and stored together with 
the linear standardization coefficients, k (scaling factor) and b 
(bias) for each case. The scaling/standardization coefficients are 
determined for each material based the range of data, e.g. max 
value. 

 
Fig. 5. Data standardization process (linear rescaling through y=kx+b) 

C. Random shift/flip of B waveform 

In given datasets, the input waveforms’ phase all starts at 
zero, this differs from continuous waveforms in the real physical 
world, where the initial phase does not always begin at zero. To 
enhance the generalisation and avoid overfitting to the time-
sequence waveform data, a data augmentation technique are 
implemented on the training data to apply random vertical and 
horizontal flipping as well as random phase shifting of the input  
B waveforms as illustrated in Fig. 6,  before the datasets enter 
the training stage. The assumption is that shifting horizontally 
(i.e. applying a phase shift) and/or flipping (vertically and 
horizontally) the B waveform will not change the core loss 
density associated with this waveform – based on domain 
knowledge, this assumption should be valid given the core loss 
density is an averaged value over one whole cycle of a periodic 
B waveform repeating itself once every 1/f second. Note a 
rotation (pivoting) of the B waveform by an angle, instead of 
shifting or fliping, will invalid the euqal loss assumption. The 
phase shifting is similar to the approach in [11], while the 
flipping is an original contribution of this work.  

 
Fig. 6. Shifting and flipping operations of input B waveforms 

These operations bring the following significant advantages 
in the machine learning model. 1. Decoupling the model from 
waveform phase dependency - through this approach, the model 
is not specific to inputs of a particular phase, thereby being 
adaptable to waveforms of any phase, or say insensitive to the 
phase of the waveform, which enhances the model's 
generalization capability. 2. Expand the training dataset - the 
random flip and phase shift effectively increase the size of the 

training set, providing the model with the opportunity to learn 
from a broader range of data variations. This helps the model to 
learn more robust waveform features, thereby improving its 
predictive performance. 

Specifically, this data augmentation method equates to a 
512-fold increase (22128) in the number of training samples, 
which not only significantly enhances the model's capability to 
process different waveforms but also strengthens its potential 
application in the real-world's complex environments. Through 
such a training strategy, the model is better equipped to 
understand and predict the magnetic losses caused by various 
waveforms of different phases and shapes, thereby enhancing 
the model's accuracy and reliability. 

V. FEW-SHOT TRAINING 

In the testing stage of the challenge, the datasets for the five 
known materials are significantly small and skewed on  
waveform composition. 

A. Modified neural network 

Generally, training a neural network with a small dataset 
(less than 3000 samples) often leads to severe overfitting issues. 
To mitigate overfitting, it is crucial to select an appropriate 
neural network architecture, leverage pre-trained models, and 
employ effective data processing methods. 

 
Fig. 7. Adjusted neural network structure for few-shot learning 

This new neural network is specifically designed to address 
scenarios where the dataset is smaller than three thousand 
samples. It has fewer parameters, making it more suitable for 
training with smaller datasets. While this design necessitates 
some trade-offs in terms of accuracy, it significantly mitigates 
the problem of overfitting. The network inputs both waveform 
data frequency and temperature into an LSTM neural network. 

B. Base model selection 

Despite the network structure, training with a small dataset 
can still lead to overfitting. Thus, it is crucial to select an 
appropriate base model for transfer learning and employ 
effective data processing methods. As illustrated in Fig. 8, when 
training a new model X, one should first calculate the relative 
errors using ten base models and then identify the model with 
the smallest variance as the optimal base model for the new 
model. Subsequently, the model's normalization parameters are 
adjusted to align the data on magnetic loss.  

C. Output data alignment in the fine-tuning stage 

To cope with the small-training-set problem, a special “output 
data alignment” technique is applied in the fine-tuning stage as 
a data standardisation approach. Given the objective in the fine 
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tuning stage is to minimise the modification of the base model 
and unwanted overfitting towards the small training set, the 
output data (core loss density) to be fed into the training process 
is standardized in a different way – they are rescaled in a manner 
to align their extracted features with those of the original training 
data, to enhance the fine-tuned model. To align the relative error 
distrubition of the new datasets, a shift and rescaling is applied 
in the data standardization process to match the distributions in 
the source/training set as shown in Fig. 8. 

D. Data augmentation 

To cope with the cases with limited and unbalanced training 
set, a data augmentation approach is applied to artificially 
expand the training set in these cases. For example, the training 
set of Material D only contains 580 samples, with an unbalanced 
split between sinusoidal, trangular and trapezoidal waveforms 
(e.g. 145/400/35). However, the testing data of Material D is 
7299 entries with a 61/2247/4991 split – the testing data has a 
large portion with trapezoidal waves, while the training set has 
very limited data for this case. To compensate this mismatch, the 
trapezoidal data in the training set is artificially duplicated and 
expanded to match the waveform split in the test set as much as 
possible, which leads to a 145/2000/700 split. 

E. Example on Material D 

The provided evaluation below shows an attempt to train a 
neural network for an unknown material, "Material D." As 
shown in Fig. 9, initializing the model with all-zero parameters 
or using the traditional '3C90' material as the base results in slow 
convergence during training and reaches a plateau without 
further significant error reduction. However, when the model is 
based on the '3F4' material, which has the smallest variance 
among the considered base models, it achieves lower error rates 
more quickly. Furthermore, when the '3F4' model is properly 
aligned with Material D through output data alignment,  its 
convergence rate is significantly enhanced compared to using 
the unadjusted pretrained '3F4' model. 

 
Fig. 9. Training loss of difference base models and with/without alignment 

VI. MODEL INFERENCE 

A. Data de-standardization 

At the end of model inference, a de-standardizaion process 
is applied to translate back the loss density value to the original 
scale based on the scaling factors (k and b) stored in the 
standardization stage.  

B. Averaging output with random shift/flip 

When the model is deployed, the shifting/flipping of the B 
waveform can still lead to variations of the predicted loss. To 
take this factor into account, for each entry of the test data, the 
B waveform is processed into 100 (adjustable) instances with 
different phase shifts, which yields 100 predicted volumetric 
loss values. These values are averaged in a post-processing step 
to obtain the final prediction for this entry. 

VII. RESULTS 

A. Base models 

The accuracy achieved for base models are listed below. 

Table II Achieved accuracy for base models 

Material 3C90 3C94 3E6 3F4 77 

Avg (%) 1.41 0.97 0.72 1.00 1.45 

95thErr (%) 3.68 2.77 1.64 2.84 3.09 

Max (%) 11.08 12.11 18.81 8.59 8.08 

Material 78 N27 N30 N49 N87 

Avg (%) 1.35 0.91 0.56 2.87 0.89 

95thErr (%) 3.07 2.53 1.41 7.66 2.63 

Max (%) 11.38 9.83 24.02 29.93 8.61 

 
Fig. 8. Base model selection logic based on relative error distribution and output data alignment 
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It is observed that the average error for most models hovers 
around 1%. The 95% confidence interval is at 3%, and the 
maximum error is below 10%. 

B. Fine-tuned models 

Based on the above machine learning framework, five 
models are produced for the five unknown materials. The 
performance of these models is evaluated against the validation 
sets in the five cases, with the results shown in Fig. 10. Although 
the average of 95-percentile-error for the 10 known materials 
can achieve around 2.5%, the model’s performance deteriorated 
in the cases of the five unknown materials due to the limited 
training sets. The average 95-percentile-error of the other four 
unknown materials achieves a 6.6%. 

 
Material A 

 
Material B 

 
Material C 

 
Material D 

 
Material E 

Fig. 10. Error distribution against the validation set for the target five 

unknown materials 

The size of the five models are listed below in terms of 
number of parameters and file sizes.  

Table III Model Size 

 Material A Material B Material C Material D Material E 

Number of 
parameters 

15,653 90,653 90,653 16,449 16,449 

Model Size 361 KB 361 KB 361 KB 70 KB 70 KB 

VIII.  CONCLUSION 

This work has developed and demonstrated a machine 
learning pipeline in response to the MagNet Challenge 2023. An 
LSTM + FNN structure is applied as the core machine learning 
approach which features relatively low computation load. 
Several techniques are applied in the data pro-processing stage 
to enhance the model accuracy, reduce computation load and 
minimize bias/overfitting. Based on domain knowledge, a 
random shift/flip operation is applied on the B waveforms as pre-
processing to desensitize the model from the sequence of the 
waveform data for feature extraction. A special data 
standardization and augmentation method is applied in the fine-
tuning stage to realize few-shot training to cope with the small 
training set. Overall, excellent accuracy has been achieved by 
the proposed framework as evidenced by the 3rd Place 
performance validated against the experimentally measured 
testing sets. The submitted model outperforms all competing 
models in the few-shot learning senario (Material D), which 
resulted in a 15.9% 95th percentile relative error under the 
challenge of small and skewed dataset – in contrast, the second 
place’s relative error is 20.6%. 
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