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ABSTRACT
This paper summarized the advancements and results of
MagNet Challenge 2023, an open-source collaborative re-
search initiative for data-driven power magnetics material
modeling. MagNet Challenge 2023 was jointly hosted by
Princeton University and Dartmouth College as the first
IEEE Power Electronics Society International Challenge on
Design Methods in Power Electronics, and have received
industrial support from Google and Enphase Energy. The
competition spanned from February 2023 to February 2024
and welcomed participation from 39 undergraduate and grad-
uate student teams worldwide. Participants were tasked with
developing software algorithms that can learn from provided
training data and subsequently competed on undisclosed
testing data. The competition yielded a collection of publicly
disclosed software algorithms and tools designed to capture
the distinct loss characteristics of power magnetic materials.
The MagNet Challenge attempts to bridge power electronics
domain knowledge with state-of-the-art advancements in
artificial intelligence, machine learning, pattern recognition,
and signal processing. Benefited from the transparent and
collaborative open-source culture, the MagNet Challenge
had greatly improved the accuracy and reduced the size of
data-driven power magnetics models. The models and tools
created for various materials were meticulously documented
and shared within the broader power electronics community.

KEYWORDS
Open-Source, Data-Driven Methods, Machine Learning, Ar-
tificial Intelligence, Power Magnetics, Modeling

I. MAGNET CHALLENGE 2023 OVERVIEW

MAGNETIC components account for more than 30 %
of both the cost and losses in nearly all power

converters [1], [2]. The performance of these magnetic
components poses a significant bottleneck in advancing high-
performance power electronics. Magnetic components are
becoming increasingly sophisticated with different portion of
the core excited by different waveforms [3], and dc-bias [4]
with geometry [5] and temperature [6] impact. While circuit
simulation tools have expedited integrated circuit design,
and numerical field simulation tools have deepened our
understanding of intricate component geometries, progress
in modeling and simulating power magnetic material char-
acteristics has been lagging.

Fundamentally, Maxwell’s equations can precisely de-
scribe the linear behavior of conductors at high frequencies.
Finite element models have the potential to largely capture
the geometry and thermal impact. The challenge lies in
the highly nonlinear nature of magnetic materials and the
considerable variation in magnetic component-level behav-
iors arising from the material properties and manufacturing
processes [7]. Despite advancements in physical theory elu-
cidating core loss phenomena, it falls short in predicting
these occurrences with practical accuracy for real-world
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FIGURE 1. The vision and mission of MagNet Challenge 2023. The
open-source initiative aims at developing less complex, more versatile,
and more accurate data driven power magnetics models.

materials. Existing magnetic material modeling tools either
oversimplify and lack accuracy, or rely on experimental
measurements in post-design and fabrication.

Designing high-performance magnetic components is dif-
ficult. It requires long development cycles and extensive
engineering expertise. It may take an experienced engineer
a few weeks or more to design one version of a reasonably
good magnetic component, and usually, several design iter-
ations are needed. The power electronics community would
greatly benefit from a rapid and precise method for modeling
the complex behaviors of magnetic materials, especially
tools that can be integrated with circuit simulations or finite
element analysis.

A majority of commonly used methods of modeling
core losses in power magnetics are based on the empirical
Steinmetz equation (SE) [8]. Steinmetz parameters may vary
dramatically across the magnetics operating range. As power
loss increases, the temperature of magnetic materials also
increases, which is not well captured in the Steinmetz mod-
eling framework. Despite several modifications and upgrades
to the original SE (e.g., MSE [9], NSE [10], ISE [11],
SSLE [12], CWH [13], iGCC [14], iGSE [15], i2GSE [16])
– usually by adding new parameters to the SE framework –
these curve-fitting methods have limited accuracy and cannot
be smoothly expanded to cover more influences. Upgrading
the Steinmetz modeling framework is an important start to
revolutionizing the design flow for power magnetics.

Another important task for describing power magnetic
materials is to model the B–H loops [17]–[20]. As a
material signature, the B–H loop can be used to estimate
the power loss, and can be used in analytical or numerical
tools to analyze the behaviors of magnetic components, such
as inductance variation, saturation, and coupling. Existing
hysteresis modeling frameworks (e.g., the Preisach model
[21] and the Jiles-Atherton model [22]) are generally devel-
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oped based on empirical equation-based methods. There are
opportunities of upgrading the B-H modeling methods with
modern neural network methods [23], [24].

As illustrated in Fig. 1, a modeling framework that can
better leverage modern data-driven methods to improve the
model accuracy, model versatility, and to reduce the model
size is the goal of the MagNet Challenge 2023.

A. MagNet Challenge 2023 Motivations
“It’s time to upgrade the Steinmetz equation!” – Steinmetz’s
equation (SE) is an empirical equation used to calculate the
power loss (typically referred to as core losses) per unit
volume in magnetic materials when subjected to external
sinusoidal magnetic flux. The earliest version was proposed
by Charles Steinmetz in 1890s. Typically, the SE is written
as:

Pv = k × fa ×Bb
ac, (1)

where Pv is the time average power loss per unit volume in
mW/cm3, f is the frequency in kHz, and Bac is the peak
magnetic flux density in mT; k, a, and b, known as the
Steinmetz coefficients or Steinmetz parameters, are generally
found empirically from the material’s B–H hysteresis curve
by curve fitting. In the past decades, the most noticeable
upgrade to the Steinmetz equation is the improved gener-
alized Steinmetz equation [25], often referred to as iGSE,
which calculates losses with any flux waveform using only
the parameters needed for the original equation. The iGSE
can be expressed as:

Pv =
1

T

∫ T

0

ki|
dB

dt
|a(∆Bb−a)dt. (2)

Here, ∆B is the peak-to-peak flux density in T, and ki is
defined by ki = k

(2π)a−1
∫ 2π
0

| cos θ|a2b−adθ
while a, b, and

k are the same coefficients used in the original Steinmetz
equation. The iGSE is still widely used in academia and
industry because most other models require parameters that
are not usually given by manufacturers and that engineers
are not likely to measure. The i2GSE method [16] further
improved the iGSE by adding 5 more parameters to the
original 3 Steinmetz parameters to achieve higher accuracy.
A key limitation of these models is that they do not capture
the impact of flux dc-bias and temperature.

The MagNet Challenge 2023 aims to challenge the exist-
ing Steinmetz equation-based core loss modeling framework
with the support of a massive amount of measurement
data covering different materials across a wide range of
frequencies, waveform shapes, and temperatures. We seek
novel and elegant equations or data-driven algorithms to
develop new tools and advance the entire power electronics
society’s understanding of magnetic core characteristics,
especially core loss. The key questions we tried to answer
when designing the challenge rules include:

• Shall we use one uniform modeling framework (e.g.,
the SE framework) or explore many different model-
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FIGURE 2. The 1-year timeline of the MagNet Challenge 2023 from
February 2023 to February 2024.

ing frameworks for modeling a wide range of materials
under different purposes?

• How accurate is accurate enough for power magnetics
modeling, considering sample-to-sample variation, tem-
perature and geometry dependence, dc-bias, and other
operating conditions?

• What is the minimum number of parameters one
model need to include to describe a particular power
magnetics material across a wide operation range?

• What is the best framework for modeling power mag-
netics considering different design goals (e.g., for core
loss modeling, B–H loop modeling, hand calculation,
SPICE simulation, or finite element analysis)?

• How can we visualize the data and develop explainable
data-driven models to advance the physical under-
standing of power magnetics?

• How much data do we need to train a good magnetic
material model across a wide operation range? How to
sample the operation space and reduce the dimension?

These are just example questions one may ask when
developing a new data-driven framework for modeling power
magnetic material characteristics. Modeling core loss is our
focus in MagNet Challenge 2023. B–H loop information
was provided as training data, but predicting B–H loops was
beyond the scope of this challenge. To answer these ques-
tions, we designed the following three competition tracks:

• Model Performance Track: Develop a systematic ap-
proach to learn from a large-scale amount of existing
data for pre-existing materials, and apply this approach
to model new materials with new data, and make
accurate predictions.

• Concept Novelty Track: Develop new concepts for
power magnetic core loss and B-H loop modeling,
including but not limited to fundamental physics mech-
anisms and hypothesis, as well as data and signal
processing methods, tools and algorithms.

VOLUME , 3
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TABLE 1. Sizes of the training and testing datasets for the 10 materials

used in competition round #1.

Material 3C90 3C94 3E6 3F4 77

Training 108494 113691 6996 50630 29986
Testing 5000 5000 5000 5000 5000

Material 78 N27 N30 N49 N87

Training 24091 42948 14134 41168 142871
Testing 5000 5000 5000 5000 5000

† Each data point represents the measured B–H loop infor-
mation at a particular operating point.
‡ Three different types of excitations (sinusoidal, triangle, and
trapezoidal) are included for each material in both the training
and testing sets.

• Software Engineering Track: Develop code and soft-
ware systems with high readability, reusability, and ver-
satility for open-source development. Enhanced human-
computer interface for rapid design iteration.

By participating in the MagNet Challenge 2023, all teams
automatically enter the above three tracks and compete on
model performance, size and software engineering. Figure 2
shows the timeline of MagNet Challenge 2023. The MagNet
Challenge attracted a community of international researchers
to explore the important questions together. By submitting
the code and the results to MagNet Challenge 2023, the
intellectual property is disclosed to the public.

B. MagNet Challenge 2023 Rules and Data Preparation
The goal of MagNet Challenge 2023 is to develop intelligent
software tools that can learn and predict core loss informa-
tion with efficient data usage. For each magnetic material of
interest, student teams were asked to develop a MATLAB or
Python function that takes the following three floating-point
inputs for modeling power magnetic materials in steady state:

• A single-cycle arbitrary flux density waveform in 1024-
step: B(t) (unit: T).

• An operation frequency: f (unit: Hz).
• A temperature: T (unit: degree C).

and produce the following output:

• An average volumetric core loss estimation (floating
point): Pv (unit: W/m3).

Due to lack of high quality data, dc-bias [4] and geometry
impact [5] are not included in MagNet Challenge 2023. Stu-
dent teams are encouraged to consider dc-bias information
which may be included in future competitions.

Figure 3 shows an example data point used in the MagNet
Challenge 2023. The training data includes the B-H loop
time sequences, frequency f , and temperature T . The final
outcome of the model is a callable function:

Pv = f(B(t), f, T ). (3)

TABLE 2. Sizes of the training and testing datasets for the 5 materials used

in competition round #2.

Material 3C92 T37 3C95 79 ML95S

Training 2432 7400 5357 580 2013
Testing 7651 3172 5357 7299 3738

† The training and testing datasets were strategically
sampled in particular ways to examine the model per-
formance from different angles.

The data used for the MagNet Challenge 2023 comes from
the MagNet Project [7], [23], [24]. The challenge included
two rounds of competitions: a pre-test round which allows
the teams to get familiar with the data and the competition
rules, and a final-test round which determines the teams’
final ranking. Each training data point is offered as a pair of
single-cycle B(t) and H(t) time sequences, with 1024-steps
at different frequencies f and temperatures T . The area of
the B–H loop determines the volumetric core loss Pv. Note
different numerical integration algorithms for calculating the
B–H loop areas may result in very different core loss
estimation results, especially if the B–H curve is non-
smooth (e.g., due to non-sinusoidal excitation or nonlinear
material behavior). The testing data points include B(t), f ,
and T , but do not include H(t) or Pv. The datasets used for
the pre-test phase and the final-test phase are:

• Round #1 Training: A large amount of training data for
10 materials: {3C90, 3C94, 3E6, 3F4, 77, 78, N27,
N30, N49, N87}.

• Round #1 Testing: Randomly sampled testing data for
the same 10 materials: {3C90, 3C94, 3E6, 3F4, 77,
78, N27, N30, N49, N87}.

• Round #2 Training: Strategically sampled training data
for 5 materials: {3C92, T37, 3C95, 79, ML95S}.

• Round #2 Testing: The rest data for the same 5 materi-
als used in Round #2 training: {3C92, T37, 3C95, 79,
ML95S}.

Table 1 and Table 2 list the size of the dataset made
available for each material. As documented in [7], [23], the
MagNet dataset covers a frequency range between 50 kHz to
500 kHz, and a flux density range between 10 mT to 300 mT,
with sinusoidal, triangular, and trapezoidal waveforms. The
maximum measurement error is generally controlled below
20% across the full operation range [7], making it attractive
to developing core loss models with an average error below
10 % (i.e., pushing for high model accuracy by increasing the
model complexity and the number of model parameters).

The names of the materials used in the round #2 competi-
tion were kept confidential from the student teams to ensure
competition fairness. The datasets for the 5 materials used
in the round #2 competition were strategically sampled to
test the model performance from 5 different ways:

4 VOLUME ,



Single-Cycle B-H Sequences Single-Cycle B-H Loop

FIGURE 3. An example data point offered in the MagNet Challenge 2023.
This data point describes the B–H loop of N87 material operating at
25◦C, 200 kHz, and zero dc bias under a trapezoidal excitation. The
volumetric core loss is 113.64 kW/m3. Over 2,000,000 data points like this
is available in the MagNet database for 15 different materials.
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FIGURE 4. The histogram of the prediction error of an example model,
together with labeled average, 95th percentile error, and maximum error.

• 3C92 (Material A) is a material which looks very
similar to the 10 materials available in the first round
training set. It was used to set up a “tiny data chal-
lenge”, in which only a small dataset was offered for
training, and a large dataset was reserved for testing.

• T37 (Material B) is a broadband material which looks
fairly different from the 10 materials available in the
previous training set. It was used to set up a “new mate-
rial challenge”, in which a large dataset was offered for
training, and a small dataset was reserved for testing.

• 3C95 (Material C) is a material used for testing temper-
ature dependence. It was used to set up a “temperature
challenge”, in which the testing dataset includes tem-
perature which were not covered in the training dataset.

• 79 (Material D) is a material used for testing waveform
dependence. It was used to set up a “waveform chal-
lenge”, in which the training set only has very limited
data points for trapezoidal waveform excitation, while
the testing set has lot of data points for trapezoidal
waveform.

• ML95S (Material E) is a material used for testing
frequency and flux density dependence. It was used
to set up a “frequency and flux density challenge”, in
which the training set only has very limited data points
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for a few frequency and flux density operating points,
while the testing set has lots of data points which were
not covered in the training set.

C. MagNet Challenge 2023 Final Results
The MagNet Challenge 2023 focused on core loss prediction.
The absolute percentage error ϵ of the core loss prediction
is defined as:

ϵ =
|Pmeasured

v − P predicted
v |

Pmeasured
v

× 100%. (4)

Here Pmeasured
v is the measured volumetric core loss,

P predicted
v is the predicted volumetric core loss. The his-
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TABLE 3. MagNet Challenge 2023 Methodology Summary.

Team Name Method Model Size Methodology Highlights

ASU Black-Box Data-Driven 1576 Systematic transfer learning and model optimization
Bristol Black-Box Data-Driven 90653 Systematic transfer learning and model optimization
Fuzhou Black-Box Data-Driven 8914 Thorough neural network exploration based on deep physical insights

HDU Black-Box Data-Driven 2396048 Systematic neural network implementation
KU-Leuven Black-Box Data-Driven 118785 Generative advisory neural network development

NJUPT Black-Box Data-Driven 9728 Systematic neural network implementation
NTU Black-Box Data-Driven 28564 Systematic neural network implementation

NTUT Black-Box Data-Driven 86728 Systematic neural network implementation
Tribhuvan Black-Box Data-Driven 1033729 Systematic neural network exploration
Tsinghua Black-Box Data-Driven 116061 Systematic neural network implementation
TU-Delft Black-Box Data-Driven 1419 Systematic neural network implementation and multi-objective optimization

UTK Black-Box Data-Driven 23000 State-of-the-art neural network exploration
XJTU Black-Box Data-Driven 17342 Systematic neural network implementation
ZJUI Black-Box Data-Driven 4285 Systematic neural network implementation

CU-Boulder Grey-Box Hybrid 11012900 Binary-tree neural network and trustworthy-oriented machine learning
IISc Grey-Box Hybrid 25923 Waveform classification and neural network development

Paderborn Grey-Box Hybrid 1755 Residual CNN with physics-informed extensions (intermediate B-H reconstruction layer)
PoliTO Grey-Box Hybrid 610 Hybrid neural network model with equation based methods for trustworthy

SAL Grey-Box Hybrid 329537 Systematic neural network exploration
SEU-WX Grey-Box Hybrid 139938 Hybrid neural network model with physical insights
Sydney Grey-Box Hybrid 1084 Hybrid neural network model with physical insights, excellent software engineering

Manchester White-Box Equation-Based N/A Physics-oriented model exploration
Mondragon White-Box Equation-Based 60 Fully automated multi-dimensional curve-fitting

SEU-MC White-Box Equation-Based 81 Multi-dimensional curve-fitting with physical insights

togram of ϵ for each material is then plotted with the average,
the 95th and 99th percentile, and the maximum errors labeled
as in Fig. 4. The 95 % percentile error was used to rank the
accuracy of different models. Based on our evaluation of
sample-to-sample variation of power magnetic components
[7], we anticipate a 95th percentile error of less than 10 %
as competitive for magnetic core loss modeling.1

It is important to quantify the model size. We define
the model size as the total number of parameters that one
model needs to remember to describe the characteristics
of each material. The complexity of algorithms, such as
model structure, iteration loops, layers of neuron networks,
do not count as parameters. MagNet Challenge 2023 was
designed to encourage models with more computation and
less memory usage.

39 teams from 18 countries registered to the MagNet
Challenge 2023. 24 teams stayed until the end and submitted
the final results. A complete list of the participating teams in
the two rounds of competition are provided in the Appendix.

1The normalization in (4) might led towards a data bias overemphasizing
samples with very low absolute losses since the estimation error (numerator)
typically does not scale linearly with the target value (denominator). While
operation points with low losses (i.e., low load) are typically of less
interest when design magnetic components for power electronics, alternative
performance metrics might be considered in future challenges.

Figure 5 shows the average 95th percentile error and
model size of the final submissions. The winning models
use about 1,000 parameters to achieve less than 10 % average
95th percentile error. Fig. 6 lists the accuracy ranking and
size ranking of the 24 teams. The 7 final winners of the
MagNet Challenge 2023 are:

• Model Performance 1st Place: Paderborn University
• Model Performance 2nd Place: Fuzhou University
• Model Performance 3rd Place: University of Bristol
• Excellent Innovation 1st Place: University of Sydney
• Excellent Innovation 2nd Place: TU-Delft
• Excellent Innovation 3rd Place: Mondragon University
• Software Engineering Award: University of Sydney.

The 9 honorable mention teams are:

• Arizona State University
• Indian Institute of Science
• Xi’an Jiaotong University
• Zhejiang University-UIUC
• University of Tennessee
• Politecnico di Torino
• Southeast University SEU-WX
• Southeast University SEU-MC
• Tsinghua University

6 VOLUME ,



TABLE 4. MagNet Challenge 2023 final results: 95th percentile error and model size of the 24 teams qualified for the final competition.

Material 3C92 T37 3C95 79 ML95S

Team Name % Error # Size % Error # Size % Error # Size % Error # Size % Error # Size

ASU 9.6 1576 5.6 1576 8.5 1576 55.3 1576 13.5 1576
Bristol 8.5 90653 2 90653 4.5 90653 15.9 16449 8 16449
Fuzhou 4.9 8914 2.2 8914 2.9 8914 20.7 8914 9 8914

HDU 16 2396048 3.7 2396048 6.8 2396048 201.4 2396048 19.3 2396048
KU-Leuven 72.4 118785 58 118785 66.1 118785 71.3 118785 53.7 118785

NJUPT 45.9 9728 6.9 29600 26.4 21428 59.4 1740 68.4 8052
NTU 99.8 28564 88.7 28564 93.7 28564 99.3 28564 97.8 28564

NTUT 19.9 86728 7.4 86728 7.7 86728 65.9 86728 85.1 86728
Tribhuvan 24.5 1033729 8 1033729 8.9 1033729 67.9 276225 118.7 1033729
Tsinghua 13.1 116061 6.4 116061 9.3 116061 29.9 116061 25.7 116061
TU-Delft 7.2 1419 1.9 2197 3.5 2197 29.6 1419 9.1 2454

UTK 15.6 23000 4.3 23000 9.3 23896 79.2 32546 98 25990
XJTU 12.4 17342 3.8 17342 10.7 17342 30 17342 14.1 17342
ZJUI 15.5 4285 6.1 4285 10.1 4285 67.9 4285 77 4285

CU-Boulder 40.5 11012900 7.8 11012900 25.2 11012900 44.1 11012900 36.3 11012900
IISc 4.6 25923 2.8 25923 6.8 25923 39.5 25923 9.3 25923

Paderborn 4.8 1755 2.2 1755 3.4 1755 22.2 1755 6.6 1755
PoliTO 32.1 610 33.4 760 27.7 748 47.1 700 28.5 610

SAL 351.2 329537 138.7 329537 439.5 329537 810.1 329537 152.8 329537
SEU-WX 26.1 139938 12.9 139938 15.6 139938 79.1 139938 19.1 139938
Sydney 10 1084 3.7 1084 5 1084 30.7 1084 19.9 1084

Manchester N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Mondragon 21.3 60 7.9 60 14.4 60 93.9 60 21.5 60

SEU-MC 38.8 81 6.9 56 21 61 50.5 23 28.2 53

Table 4 listed ther 95th percentile error and size of the
models developed by each team for each of the 5 testing
materials. The competition handbook, tutorials, supporting
documents, training and test datasets, final submitted reports,
presentation slides, meeting recordings, and the submit-
ted models can be found at: https://github.com/minjiechen/
magnetchallenge. Paderborn University and the University
of Sydney are developing tools and systems to further
disseminate the outcomes of the MagNet Challenge.

II. MAGNET CHALLENGE 2023 RESEARCH FINDINGS
The MagNet Challenge offered an opportunity for student
teams to explore a wide range of data-driven methods
for power magnetics modeling, and the outcomes of the
challenge quantitatively verified the fundamental tradeoff be-
tween model size and model accuracy. Most teams centered
their strategy around modern machine learning methods.
A few of them are focusing on physics or equation-based
methods. Evaluating a wide variety of different methods
with a strategically designed database leads to a better
understanding on the strengths and weaknesses of different
strategies.

Note all the descriptions about these models are developed
based on their performance and novelty ranking in MagNet

Challenge 2023. Although the rules of the MagNet Challenge
were carefully designed to reflect the opportunities and chal-
lenges in the real application scenario, a winning model in
the MagNet Challenge may or may not necessarily perform
well in real-world application scenarios.

A. Grey-Box Hybrid Approach
One widely-adopted data-driven approach in MagNet Chal-
lenge 2023 is the grey-box neural network approach, for
its excellent capability of balancing model accuracy and
model size. The neural network architectures are designed
with guidelines from physical understanding and explainable
logics. Fig. 7 shows the HARDCORE architecture developed
by Paderborn University [26]. The architecture starts from
feature engineering on the B(t) waveform, followed by a B–
H loop estimation block implemented as 1-D convolutional
neural network (CNN). The core loss predicted by the B–
H loop area calculation is then corrected by a data-driven
model which produces the final prediction. This model is
highly compact (with 1755 parameters) but also delivers very
high prediction accuracy across all five testing materials.

The Magnetization Mechanism-Inspired Neural Networks
(MMINN) architecture developed by University of Syd-
ney also achieved good balance between model size and
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FIGURE 7. Overview of the HARDCORE architecture developed by
Paderborn University, which leads to excellent model accuracy and
compact model size.

model accuracy. MMINN is designed to capture the fun-
damental magnetization process of magnetic materials at
the microscopic-level. As illustrated in Fig. 8, MMINN
comprises two subnetworks for capturing hysteresis (i.e.,
the magnetization of magnetic domains) and dynamic (i.e.,
the eddy current of the core material owing to the elec-
tromagnetic induction) behaviors, and has the potential to
be extended to capturing more complex dynamic core loss
profiles when more data is available. The compact MMINN
model only needs 1000 parameters and performed well on
the accuracy test.

The model proposed by the team from Politecnico di
Torino tried to apply different modeling methods to different
excitation waveforms to minimize the model size. SVM
regression were used to model sinusoidal excitations and
neural networks were used to model triangle excitations.
Composite waveform hypothesis was then used to convert the
results predicted by the neural network trained with triangle
data for trapezoidal excitations.

The model presented by the team from Indian Institute
of Science followed a similar strategy. Three different neural
networks are trained for three different waveform excitations.
The model achieved very high accuracy on four materials
(except for 79) with a relatively large number of parameters.

The team from University of Colorado Boulder selected
random forest algorithms as the core of their strategy.
Random forest algorithms prioritize rapid computation over
parameter size as compared to other previously mentioned
neural network methods.

H

B

Hysteresis subnetwork

H

B

H

B

Dynamic subnetwork

FIGURE 8. The MMINN architecture developed by University of Sydney.

The Southeast University SEU-WX team presented an
interesting Physics-Inspired Multimodal Feature Fusion Cas-
caded Network (PI-MFF-CN), which was developed based
on micromagnetism and the associated Landau-Lifshitz-
Gilbert (LLG) equation, and is trained by embedding phys-
ical mechanisms in the gradient learning process of the
network. As shown in Fig. 9, a multimodal feature fusion
method then combines the advantages CNN and fully con-
nected neural network (FCNN) to learn mixed sequence scale
data. Although not ranking high in the competition, this
method represents a deep exploration of hybrid data-driven
and physics-based models.

The teams from Nanjing University of Posts and Tele-
com., University of Manchester, and Tribhuvan Uni-
versity also explored equation based methods with novel
insights and promising outcomes.

B. Black-Box Data Driven Approach
The model developed by Fuzhou University fully exploited
the potential of encoder-projector-decoder based architec-
ture, together with deep understanding about the data and
the principles of core loss modeling. The sequence-to-scalar
transformer model offers smaller size compared to sequence-
to-sequence models. The pretraining and fine-tuning strategy
further improves the accuracy of the model when facing
cases with limited data.

The University of Bristol team adopted a long-short-term-
memory (LSTM) architecture to process the time sequences,
followed by a Feedforward Neural Network (FNN) for merg-
ing frequency and temperature information. The outstanding
model performance comes from the deep understanding and
engineering practice on transfer learning. As illustrated in
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FIGURE 9. The two-stage PI-MFF-CN architecture developed by Southeast University SEU-WX.

FIGURE 10. Transfer learning strategy from University of Bristol.

Fig. 10, the transfer learning process enables the model to
achieve high performance even with very limited available
data for a new power magnetic material. This model needed
a lot of parameters, but achieved high performance across
all five materials.

The Delft University of Technologies team proposed an
excellent strategy for multi-material transfer learning and
model multi-objective optimization (MOO). As illustrated in
Fig. 11, the MOO approach allows the model to precisely
select the right parameter size to balance model size and
accuracy. The optimization shows that a total number of

FIGURE 11. The multi-material transfer learning and multi-objective
optimization method proposed by TU Delft.

1,000 parameters is a good balancing point between model
size and accuracy, which was validated when comparing all
winning models in the MagNet Challenge 2023.

The University of Tennessee Knoxville team introduces
the state-of-the-art machine learning concepts – Attention-
based U-Net architecture, to the MagNet Challenge 2023.
U-Net is a neural network architecture widely used for
image segmentation. The team specifically designed a U-Net
architecture to adapt to the intricate and varying nature of
magnetic materials and operational environments. The large
U-Net model excelled for 3C92, T37, and 3C95, but didn’t
perform well for 79 and ML95S.
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FIGURE 12. The U-Net architecture developed by University of Tennessee
Knoxville, representing an out-of-the-box attempt by using state-of-the-art
neural network architecture.

FIGURE 13. The cGANET architecture developed by KU Leuven.

The teams from Arizona State University, Xi’an Jiao-
tong University, Tsinghua University, National Taipei
University of Technology, Nanyang Technological Uni-
versity, Hangzhou Dianzi University, and Silicon Austria
Labs also presented a variety of neural network architectures
(combinations of ViT, CNN, FCNN, LSTM, and Trans-
former) together with systematic training and fine-tuning
strategies for cross-modeling of many materials. Some of
these models’ performance are very good and the model sizes
are small.

The KU-Leuven team introduced a novel Conditional
Generative Adversarial Network (cGANET) model which
explores the possibility of training an adversarial neural net-
work to improve the trustworthyness of a traditional neural
network approach. It has the potential to ensure bounded
safety for data-driven methods to predict trustworthy results.

C. White-Box Equation-based Approach
The most successful equation-based attempt in the Mag-
Net Challenge 2023 is the ci2GSE method developed by
the team from Mondragon University. The method is a
combination of the original true Steinmetz Equation (tSE),
the improved Generalized Steinmetz Equation (iGSE), the
composite waveform hypothesis (CWH), and the improved
improved Generalized Steinmetz Equation (i2GSE). For each
temperature point, the ci2GSE uses 9 parameters to describe
the core loss a three step trapezoidal excitation as:

Pv =D × (ek
′
1+a1 ln | dB

dt |+b1 ln∆B + ek
′
2+a2 ln | dB

dt |+b2 ln∆B)

+ f × ek
′
rel+arel ln |trel|+brel ln∆B

(5)
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FIGURE 14. Roadmap of the MagNet challenge with addressed topics
marked in red boxes, and future topics marked in white boxes.

where k′1, k′2, k′rel, a1, a2, arel, and b1, b2, brel are the
Steinmetz parameters used to describe the core losses in the
three sub-sections of the piece-wise linear waveforms (e.g.,
triangle and trapezoidal excitations). The core losses during
the relaxation time are captured. In addition, six additional
parameters p00, p10, p01, p20, p11 and p02, are used to fit
the sinusoidal core loss data into the three dimension f ,
∆B, and Pv plane. The curve-fitting was performed for
each temperature. The total number of parameters needed
to describe the material characteristics at four temperature
points are (9+6)× 4 = 60. The curve-fitting algorithm was
implemented in Excel and was fully automated. The average
95th percentile error of this method is about 15 %, which is
impressive for only 60 parameters.

Another impressive equation-based approach was devel-
oped by the Southeast University SEU-MC team employ-
ing the vector magnetic circuit theory to predict core loss.
The theory is developed based on lumped circuit analysis
and is very similar to the Laithwaite magnetic equivalent
circuit model. The model on average used 60 parameters to
describe each material, and reach a similar accuracy as that
of the Mondragon model. However, the model tuning process
is not fully automated.

III. MAGNET CHALLENGE ROADMAP
The ultimate goal of the Magnet Challenge is to explore
and compare a wide range of modeling strategies for power
magnetic components, and to optimize and automate power
magnetic design. To this end, we believe that the future
Magnet model should be:

• Accuracy: to reach a high level of model accuracy
(as accurate as the data accuracy and sample-to-sample
variation) and repeatability for magnetics modeling in
the design, development, and manufacturing process,
and to precisely reflect the multi-scale and multi-
physics nature of power magnetics modeling.

• Compactness: to achieve efficient model training, rapid
simulation, and effective optimization. This is particu-
larly important given the lack of sufficient high-quality
publicly available training data and the potentially
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huge design space (materials, geometries) and model
operating space (excitation waveforms, temperatures,
frequencies, peak flux densities, etc.) of magnetic com-
ponents. A simpler model generally means a smaller
number of model parameters and a more efficient usage
of measurement data.

• Generality, consistency, and versatility: a good power
magnetic component model should be applicable to a
wide range of application scenarios with minimum lim-
itations, and be consistent with other existing compo-
nent models (e.g., semiconductor models and capacitor
models) for high fidelity design and simulation, and be
versatile so that it can be adjusted for different design
purposes (e.g., trading model simplicity for accuracy).

Fig. 14 shows the strategic roadmap of the MagNet
Challenge in the near future, including the topics that Mag-
Net Challenge 2023 has covered, and the topics MagNet
Challenge 2024 intents to cover. This roadmap is in line with
the above-mentioned characteristics of the future Magnet
model, with a particular focus on the generality of the model.
For example, MagNet Challenge 2023 prioritizes model
accuracy and simplicity for periodic steady state, major-
loop, and zero dc-bias type of excitation waveforms. The
excitation frequency is limited in the tens to hundreds kilo-
Herz range at sparse temperature points (four points only).
In the future, more complicated excitation profiles (e.g.,
transient excitations with minor-loop and non-zero dc bias),
wider operation range (e.g., frequency range up to a few
Megahertz), transient operation (e.g., magnetic components
in switched-mode ac-dc converters) and geometry impacts
will need to be explored.

The winning models in the MagNet Challenge 2023 only
perform well under the designated training and testing sce-
nario, and are not necessarily the most appealing modeling
strategies. Better models and better interpretations are still
to be found. The potential technologies that will be explored
in future Magnet Challenges may include:

• Data Engineering: In MagNet Challenge 2023, the
data acquisition is performed by the Challenge orga-
nizer and manage and distributed in a centralized way.
Data acquisition should be standardized and be rigor-
ously cross-validated and certified across institutions.
For data-driven methods, the quality of a model is
fundamentally limited by the quality of data. In future
challenges, an open-source, transparent, community-
driven data management strategy may ensure the sus-
tainable development of the community.

• Model Framework: The MagNet Challenge 2023 ex-
plored Black-Box Data Driven methods, White-Box
Equation-based methods, and Grey-Box Hybrid meth-
ods were explored. A majority of student teams per-
formed time domain analysis. Frequency domain meth-
ods are under explored. The machine learning frame-
works are rapidly evolving and it is still early to iden-

tify the best strategy for modeling power magnetics.
Modeling frameworks that can be naturally expanded
and updated to cover many different materials under a
unified framework worth exploration. Modeling frame-
works that can naturally interface with large-language
models also deserve their roles.

• Data Visualization: Power magnetics modeling is nat-
urally complex and has high dimension. Systemati-
cally compressing, filtering, and visualizing the high-
dimension data for human interpretation is critical for
advancing the human-data interface and enabling new
data-driven applications.

• Physical Insights and Better Materials: Although the
MagNet Challenge 2023 didn’t intent to close the loop
for advancing physical understanding of power mag-
netics, many teams attempted (e.g., UTK, Manchester,
SEU-MC). With larger data size, better data quality,
more powerful data-driven models, and better human-
data interface, we hope the MagNet Challenge can
ultimately lead to enhanced physical understanding of
power magnetics, and better magnetic material and
component design.

IV. CONCLUSION
This paper summarizes the key progress and major outcomes
of the MagNet Challenge 2023, an International Challenge
on Design Methods in Power Electronics supported by IEEE
Power Electronics Society, Google, and Enphase Energy. The
critical outcomes and performance ranking of the challenges
are streamlined and highlighted.
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APPENDIX: MagNet Challenge 2023 Participating Teams
The 39 undergraduate and graduate teams that registered for
the MagNet Challenge 2023 include:

1) Aalborg University, Denmark
2) Arizona State University, USA
3) Cornell University Team 1, USA
4) Cornell University Team 2, USA
5) Federal University of Santa Catarina, Brazil
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6) Fuzhou University, China
7) Hangzhou Dianzi University, China
8) Indian Institute of Science, India
9) Jinan University, China

10) Katholieke Universiteit Leuven, Belgium
11) Mondragon University, Spain
12) Nanjing University of Posts and Telecom., China
13) Nanyang Technological University, Singapore
14) Nation Taipei University of Technology, Taiwan
15) Northeastern University, USA
16) Paderborn University, Germany
17) Politecnico di Torino, Italy
18) Purdue University, USA
19) Seoul National University, Korea
20) Silicon Austria Labs, Austria
21) Southeast University SEU-WX, China
22) Southeast University SEU-MC, China
23) Tribhuvan University, Nepal
24) Tsinghua University, China
25) Delft University of Technology, Netherland
26) University of Bristol, UK
27) University of Colorado Boulder, USA
28) University of Kassel, Germany
29) University of Manchester, UK
30) University of Nottingham, UK
31) University of Sydney, Australia
32) University of Tennessee, USA
33) University of Twente Team 1, Netherland
34) University of Twente Team 2, Netherland
35) University of Wisconsin-Madison, USA
36) Universidad Politécnica de Madrid, Spain
37) Xi’an Jiaotong University, China
38) Zhejiang University, China
39) Zhejiang University-UIUC, China

The 24 teams that qualified for the round #2 competition
and submitted the final results are:

1) Arizona State University (ASU), USA
2) Fuzhou University (Fuzhou), China
3) Hangzhou Dianzi University (HDU), China
4) Indian Institute of Science (IISc), India
5) Katholieke Univ. Leuven (KU Leuven), Belgium
6) Mondragon University (Mondragon), Spain
7) Nanjing Univ. of Posts and Telecom. (NJUPT), China
8) Nanyang Technological University (NTU), Singapore
9) National Taipei Univ. of Technology (NTUT), Taiwan

10) Paderborn University (Paderborn), Germany
11) Politecnico di Torino (PoliTO), Italy
12) Silicon Austria Labs (SAL), Austria
13) Southeast University (SEU-WX), China
14) Southeast University (SEU-MC), China
15) Tribhuvan University (Tribhuvan), Nepal
16) Tsinghua University (Tsinghua), China
17) Delft Univ. of Technology (TU-Delft), Netherland
18) University of Bristol (Bristol), UK

19) University of Colorado Boulder (CU-Boulder), USA
20) University of Manchester (Manchester), UK
21) University of Sydney (Sydney), Australia
22) University of Tennessee Knoxville (UTK), USA
23) Xi’an Jiaotong University (XJTU), China
24) Zhejiang University-UIUC (ZJUI), China
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